Saturday 29 September 2012

Squamous Cell Carcinoma Medications


Definition of Squamous Cell Carcinoma: A malignant growth originating from a squamous cell. This form of cancer can be seen on the skin, lips, inside the mouth, throat or oesophagus.

Drugs associated with Squamous Cell Carcinoma

The following drugs and medications are in some way related to, or used in the treatment of Squamous Cell Carcinoma. This service should be used as a supplement to, and NOT a substitute for, the expertise, skill, knowledge and judgment of healthcare practitioners.

Learn more about Squamous Cell Carcinoma





Drug List:

Monday 24 September 2012

Tizanidine Capsules





Dosage Form: capsule, gelatin coated
Tizanidine Hydrochloride Capsules

PHARMACOKINETIC DIFFERENCES BETWEEN TIZANIDINE HYDROCHLORIDE CAPSULES AND TIZANIDINE HYDROCHLORIDE  TABLETS: TIZANIDINE HYDROCHLORIDE CAPSULES ARE NOT BIOEQUIVALENT TO TIZANIDINE HYDROCHLORIDE TABLETS IN THE FED STATE. THE PRESCRIBER SHOULD BE THOROUGHLY FAMILIAR WITH THE COMPLEX EFFECTS OF FOOD ON TIZANIDINE PHARMACOKINETICS (see PHARMACOKINETICS and DOSAGE AND ADMINISTRATION).



Tizanidine Capsules Description


Tizanidine hydrochloride is a centrally acting α2-adrenergic agonist. Tizanidine HCl (tizanidine) is a white to off-white, fine crystalline powder, which is odorless or with a faint characteristic odor. Tizanidine is slightly soluble in water and methanol; solubility in water decreases as the pH increases. Its chemical name is 5-chloro-4-(2-imidazolin-2-ylamino)-2,1,3-benzothiodiazole hydrochloride. Tizanidine's molecular formula is C9H8ClN5S-HCl, its molecular weight is 290.2 and its structural formula is:



Tizanidine hydrochloride capsules are supplied as 2, 4, and 6 mg capsules for oral administration. Tizanidine hydrochloride capsules are composed of the active ingredient, tizanidine hydrochloride (2.29 mg equivalent to 2 mg tizanidine base, 4.58 mg equivalent to 4 mg tizanidine base, and 6.87 mg equivalent to 6 mg tizanidine base), and the inactive ingredients, hydroxypropyl methyl cellulose, silicon dioxide, sugar spheres, titanium dioxide, gelatin, and colorants.



Tizanidine Capsules - Clinical Pharmacology



MECHANISM OF ACTION


Tizanidine is an agonist at α2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. The imidazoline chemical structure of tizanidine is related to that of the anti-hypertensive drug clonidine and other α2-adrenergic agonists. Pharmacological studies in animals show similarities between the two compounds, but tizanidine was found to have one-tenth to one-fiftieth (1/50) of the potency of clonidine in lowering blood pressure.



PHARMACOKINETICS


Absorption and Distribution

Following oral administration, tizanidine is essentially completely absorbed. The absolute oral bioavailability of tizanidine is approximately 40% (CV = 24%), due to extensive first-pass hepatic metabolism. Tizanidine is extensively distributed throughout the body with a mean steady state volume of distribution of 2.4 L/kg (CV = 21%) following intravenous administration in healthy adult volunteers. Tizanidine is approximately 30% bound to plasma proteins.


Pharmacokinetics, Metabolism and Excretion

Tizanidine has linear pharmacokinetics over a dose of 1 to 20 mg. Tizanidine has a half-life of approximately 2.5 hours (CV=33%). Approximately 95% of an administered dose is metabolized. The primary cytochrome P450 isoenzyme involved in tizanidine metabolism is CYP1A2. Tizanidine metabolites are not known to be active; their half-lives range from 20 to 40 hours.


Following single and multiple oral dosing of 14C-tizanidine, an average of 60% and 20% of total radioactivity was recovered in the urine and feces, respectively.


Pharmacokinetic differences between Tizanidine hydrochloride capsules and Tizanidine hydrochloride tablets

Tizanidine hydrochloride capsules and Tizanidine hydrochloride tablets are bioequivalent to each other under fasted conditions, but not under fed conditions.


A single dose of either two 4 mg tablets or two 4 mg capsules was administered under fed and fasting conditions in an open label, four period, randomized crossover study in 96 human volunteers, of whom 81 were eligible for the statistical analysis.


Following oral administration of either the tablet or capsule (in the fasted state), tizanidine has peak plasma concentrations occurring 1.0 hours after dosing with a half-life of approximately 2 hours.


When two 4 mg tablets are administered with food the mean maximal plasma concentration is increased by approximately 30%, and the median time to peak plasma concentration is increased by 25 minutes, to 1 hour and 25 minutes.


In contrast, when two 4 mg capsules are administered with food the mean maximal plasma concentration is decreased by 20%, the median time to peak plasma concentration is increased by 2 hours to 3 hours. Consequently, the mean Cmax for the capsule when administered with food is approximately 2/3's the Cmax for the tablet when administered with food.


Food also increases the extent of absorption for both the tablets and capsules. The increase with the tablet (~30%) is significantly greater than with the capsule (~10%). Consequently when each is administered with food, the amount absorbed from the capsule is about 80% of the amount absorbed from the tablet (see Figure 1). Administration of the capsule contents sprinkled on applesauce is not bioequivalent to administration of an intact capsule under fasting conditions. Administration of the capsule contents on applesauce results in a 15% - 20% increase in Cmax and AUC of tizanidine compared to administration of an intact capsule while fasting, and a 15 minute decrease in the median lag time and time to peak concentration.



Figure 1: Mean Tizanidine Concentration vs. Time Profiles For Tizanidine Hydrochloride Tablets and Capsules (2 × 4 mg) Under Fasted and Fed Conditions




SPECIAL POPULATIONS


Age Effects

No specific pharmacokinetic study was conducted to investigate age effects. Cross study comparison of pharmacokinetic data following single dose administration of 6 mg tizanidine showed that younger subjects cleared the drug four times faster than the elderly subjects. Tizanidine has not been evaluated in children (see PRECAUTIONS).


Hepatic Impairment

The influence of hepatic impairment on the pharmacokinetics of tizanidine has not been evaluated. Because tizanidine is extensively metabolized in the liver, hepatic impairment would be expected to have significant effects on pharmacokinetics of tizanidine. Tizanidine should ordinarily be avoided or used with extreme caution in this patient population (see WARNINGS).


Renal Impairment

Tizanidine clearance is reduced by more than 50% in elderly patients with renal insufficiency (creatinine clearance < 25 mL/min) compared to healthy elderly subjects; this would be expected to lead to a longer duration of clinical effect. Tizanidine should be used with caution in renally impaired patients (see PRECAUTIONS).


Gender Effects

No specific pharmacokinetic study was conducted to investigate gender effects. Retrospective analysis of pharmacokinetic data, however, following single and multiple dose administration of 4 mg tizanidine showed that gender had no effect on the pharmacokinetics of tizanidine.


Race Effects

Pharmacokinetic differences due to race have not been studied.



DRUG INTERACTIONS


Fluvoxamine

The effect of fluvoxamine on the pharmacokinetics of tizanidine was studied in 10 healthy subjects. The Cmax, AUC, and half-life of tizanidine increased by 12-fold, 33-fold, and 3-fold, respectively. These changes resulted in significant decreases in blood pressure, increased drowsiness, and psychomotor impairment. (See CONTRAINDICATIONS and WARNINGS.)


Ciprofloxacin

The effect of ciprofloxacin on the pharmacokinetics of tizanidine was studied in 10 healthy subjects. The Cmax and AUC of tizanidine increased by 7-fold and 10-fold, respectively. These changes resulted in significant decreases in blood pressure, increased drowsiness, and psychomotor impairment. (See CONTRAINDICATIONS and WARNINGS.)


CYP1A2 Inhibitors

The interaction between tizanidine and either fluvoxamine or ciprofloxacin is most likely due to inhibition of CYP1A2 by fluvoxamine or ciprofloxacin. Although there have been no clinical studies evaluating the effects of other CYP1A2 inhibitors on tizanidine, other CYP1A2 inhibitors, such as zileuton, other fluoroquinolones, antiarrythmics (amiodarone, mexiletine, propafenone and verapamil), cimetidine, famotidine oral contraceptives, acyclovir and ticlopidine, may also lead to substantial increases in tizanidine blood concentrations (see WARNINGS).


Oral Contraceptives



No specific pharmacokinetic study was conducted to investigate interaction between oral contraceptives and tizanidine. Retrospective analysis of population pharmacokinetic data following single and multiple dose administration of 4 mg tizanidine, however, showed that women concurrently taking oral contraceptives had 50% lower clearance of tizanidine compared to women not on oral contraceptives (see PRECAUTIONS).



Clinical Studies


Tizanidine's capacity to reduce increased muscle tone associated with spasticity was demonstrated in two adequate and well controlled studies in patients with multiple sclerosis or spinal cord injury.


In one study, patients with multiple sclerosis were randomized to receive single oral doses of drug or placebo. Patients and assessors were blind to treatment assignment and efforts were made to reduce the likelihood that assessors would become aware indirectly of treatment assignment (e.g., they did not provide direct care to patients and were prohibited from asking questions about side effects). In all, 140 patients received either placebo, 8 mg or 16 mg of tizanidine.


Response was assessed by physical examination; muscle tone was rated on a 5 point scale (Ashworth score), with a score of 0 used to describe normal muscle tone. A score of 1 indicated a slight spastic catch while a score of 2 indicated more marked muscle resistance. A score of 3 was used to describe considerable increase in tone, making passive movement difficult. A muscle immobilized by spasticity was given a score of 4. Spasm counts were also collected.


Assessments were made at 1, 2, 3 and 6 hours after treatment. A statistically significant reduction of the Ashworth score for tizanidine compared to placebo was detected at 1, 2 and 3 hours after treatment. Figure 2 below shows a comparison of the mean change in muscle tone from baseline as measured by the Ashworth scale. The greatest reduction in muscle tone was 1 to 2 hours after treatment. By 6 hours after treatment, muscle tone in the 8 and 16 mg tizanidine groups was indistinguishable from muscle tone in placebo treated patients. Within a given patient, improvement in muscle tone was correlated with plasma concentration. Plasma concentrations were variable from patient to patient at a given dose. Although 16 mg produced a larger effect, adverse events including hypotension were more common and more severe than in the 8 mg group. There were no differences in the number of spasms occurring in each group.



Figure 2: Single Dose Study—Mean Change in Muscle Tone from Baseline as Measured by the Ashworth Scale ± 95% Confidence Interval (A Negative Ashworth Score Signifies an Improvement in Muscle Tone from Baseline)



In a multiple dose study, 118 patients with spasticity secondary to spinal cord injury were randomized to either placebo or tizanidine. Steps similar to those taken in the first study were employed to ensure the integrity of blinding.


Patients were titrated over 3 weeks up to a maximum tolerated dose or 36 mg daily given in three unequal doses (e.g., 10 mg given in the morning and afternoon and 16 mg given at night). Patients were then maintained on their maximally tolerated dose for 4 additional weeks (i.e., maintenance phase). Throughout the maintenance phase, muscle tone was assessed on the Ashworth scale within a period of 2.5 hours following either the morning or afternoon dose. The number of daytime spasms was recorded daily by patients.


At endpoint (the protocol-specified time of outcome assessment), there was a statistically significant reduction in muscle tone and frequency of spasms in the tizanidine treated group compared to placebo. The reduction in muscle tone was not associated with a reduction in muscle strength (a desirable outcome) but also did not lead to any consistent advantage of tizanidine treated patients on measures of activities of daily living. Figure 3 below shows a comparison of the mean change in muscle tone from baseline as measured by the Ashworth scale.



Figure 3: Multiple Dose Study—Mean Change in Muscle Tone 0.5–2.5 Hours After Dosing as Measured by the Ashworth Scale ± 95% Confidence Interval (A Negative Ashworth Score Signifies an Improvement in Muscle Tone from Baseline)




Indications and Usage for Tizanidine Capsules


Tizanidine is a short-acting drug for the management of spasticity. Because of the short duration of effect, treatment with tizanidine should be reserved for those daily activities and times when relief of spasticity is most important (see DOSAGE AND ADMINISTRATION).



Contraindications


Concomitant use of tizanidine with fluvoxamine or with ciprofloxacin, potent inhibitors of CYP1A2, is contraindicated. Significant alterations of pharmacokinetic parameters of tizanidine including increased AUC, t1/2, Cmax, increased oral bioavailability and decreased plasma clearance have been observed with concomitant administration of either fluvoxamine or ciprofloxacin. This pharmacokinetic interaction can result in potentially serious adverse events (See WARNINGS and CLINICAL PHARMACOLOGY: Drug Interactions).


Tizanidine hydrochloride capsules are contraindicated in patients with known hypersensitivity to tizanidine hydrochloride or its ingredients.



Warnings



LIMITED DATA BASE FOR CHRONIC USE OF SINGLE DOSES ABOVE 8 MG AND MULTIPLE DOSES ABOVE 24 MG PER DAY


Clinical experience with long-term use of tizanidine at doses of 8 to 16 mg single doses or total daily doses of 24 to 36 mg (see DOSAGE AND ADMINISTRATION) is limited. In safety studies, approximately 75 patients have been exposed to individual doses of 12 mg or more for at least one year or more and approximately 80 patients have been exposed to total daily doses of 30 to 36 mg/day for at least one year or more. There is essentially no long-term experience with single, daytime doses of 16 mg. Because long-term clinical study experience at high doses is limited, only those adverse events with a relatively high incidence are likely to have been identified (see WARNINGS, PRECAUTIONS and ADVERSE REACTIONS).



HYPOTENSION


Tizanidine is an α2-adrenergic agonist (like clonidine) and can produce hypotension. In a single dose study where blood pressure was monitored closely after dosing, two-thirds of patients treated with 8 mg of tizanidine had a 20% reduction in either the diastolic or systolic BP. The reduction was seen within 1 hour after dosing, peaked 2 to 3 hours after dosing and was associated, at times, with bradycardia, orthostatic hypotension, lightheadedness/dizziness and rarely syncope. The hypotensive effect is dose related and has been measured following single doses of ≥ 2 mg.


The chance of significant hypotension may possibly be minimized by titration of the dose and by focusing attention on signs and symptoms of hypotension prior to dose advancement. In addition, patients moving from a supine to fixed upright position may be at increased risk for hypotension and orthostatic effects.


Caution is advised when tizanidine is to be used in patients receiving concurrent antihypertensive therapy and should not be used with other α2-adrenergic agonists.


Clinically significant hypotension (decreases in both systolic and diastolic pressure) has been reported with concomitant administration of either fluvoxamine or ciprofloxacin and single doses of 4 mg of tizanidine. Therefore, concomitant use of tizanidine with fluvoxamine or with ciprofloxacin, potent inhibitors of CYP1A2, is contraindicated (see CONTRAINDICATIONS and CLINICAL PHARMACOLOGY: Drug Interactions).



RISK OF LIVER INJURY


Tizanidine occasionally causes liver injury, most often hepatocellular in type. In controlled clinical studies, approximately 5% of patients treated with tizanidine had elevations of liver function tests (ALT/SGPT, AST/SGOT) to greater than 3 times the upper limit of normal (or 2 times if baseline levels were elevated) compared to 0.4% in the control patients. Most cases resolved rapidly upon drug withdrawal with no reported residual problems. In occasional symptomatic cases, nausea, vomiting, anorexia and jaundice have been reported. Based upon postmarketing experience, death associated with liver failure has been a rare occurrence reported in patients treated with tizanidine.


Monitoring of aminotransferase levels is recommended during the first 6 months of treatment (e.g., baseline, 1, 3 and 6 months) and periodically thereafter, based on clinical status. Because of the potential toxic hepatic effect of tizanidine, the drug should ordinarily be avoided or used with extreme caution in patients with impaired hepatic function.



SEDATION


In the multiple dose, controlled clinical studies, 48% of patients receiving any dose of tizanidine reported sedation as an adverse event. In 10% of these cases, the sedation was rated as severe compared to < 1% in the placebo treated patients. Sedation may interfere with everyday activity.


The effect appears to be dose related. In a single dose study, 92% of the patients receiving 16 mg, when asked, reported that they were drowsy during the 6 hour study. This compares to 76% of the patients on 8 mg and 35% of the patients on placebo. Patients began noting this effect 30 minutes following dosing. The effect peaked 1.5 hours following dosing. Of the patients who received a single dose of 16 mg, 51% continued to report drowsiness 6 hours following dosing compared to 13% in the patients receiving placebo or 8 mg of tizanidine.


In the multiple dose studies, the prevalence of patients with sedation peaked following the first week of titration and then remained stable for the duration of the maintenance phase of the study.



HALLUCINOSIS/PSYCHOTIC-LIKE SYMPTOMS


Tizanidine use has been associated with hallucinations. Formed, visual hallucinations or delusions have been reported in 5 of 170 patients (3%) in two North American controlled clinical studies. These 5 cases occurred within the first 6 weeks. Most of the patients were aware that the events were unreal. One patient developed psychoses in association with the hallucinations. One patient among these 5 continued to have problems for at least 2 weeks following discontinuation of tizanidine.



USE IN PATIENTS WITH HEPATIC IMPAIRMENT


The influence of hepatic impairment on the pharmacokinetics of tizanidine has not been evaluated. Because tizanidine is extensively metabolized in the liver, hepatic impairment would be expected to have significant effects on the pharmacokinetics of tizanidine. Tizanidine should ordinarily be avoided or used with extreme caution in patients with hepatic impairment (see also RISK OF LIVER INJURY).



POTENTIAL INTERACTION WITH FLUVOXAMINE OR CIPROFLOXACIN


In a pharmacokinetic study, tizanidine serum concentration was significantly increased (Cmax 12-fold, AUC 33-fold) when the drug was given concomitantly with fluvoxamine. Potentiated hypotensive and sedative effects were observed. Fluvoxamine and tizanidine should not be used together. (See CONTRAINDICATIONS and CLINICAL PHARMACOLOGY: Drug Interactions.)


In a pharmacokinetic study, tizanidine serum concentration was significantly increased (Cmax 7-fold, AUC 10-fold) when the drug was given concomitantly with ciprofloxacin. Potentiated hypotensive and sedative effects were observed. Ciprofloxacin and tizanidine should not be used together (see CONTRAINDICATIONS and CLINICAL PHARMACOLOGY: Drug Interactions).



POSSIBLE INTERACTION WITH OTHER CYP1A2 INHIBITORS


Because of potential drug interactions, concomitant use of tizanidine with other CYP1A2 inhibitors, such as zileuton, other fluoroquinolones, antiarrythmics (amiodarone, mexiletine, propafenone, and verapamil), cimetidine, famotidine, oral contraceptives, acyclovir and ticlopidine (see CLINICAL PHARMACOLOGY: Drug Interactions) should ordinarily be avoided. If their use is clinically necessary, they should be used with caution.



Precautions



CARDIOVASCULAR


Prolongation of the QT interval and bradycardia were noted in chronic toxicity studies in dogs at doses equal to the maximum human dose on a mg/m2 basis. ECG evaluation was not performed in the controlled clinical studies. Reduction in pulse rate has been noted in association with decreases in blood pressure in the single dose controlled study (see WARNINGS).



OPHTHALMIC


Dose-related retinal degeneration and corneal opacities have been found in animal studies at doses equivalent to approximately the maximum recommended dose on a mg/m2 basis. There have been no reports of corneal opacities or retinal degeneration in the clinical studies.



USE IN RENALLY IMPAIRED PATIENTS


Tizanidine should be used with caution in patients with renal insufficiency (creatinine clearance < 25 mL/min), as clearance is reduced by more than 50%. In these patients, during titration, the individual doses should be reduced. If higher doses are required, individual doses rather than dosing frequency should be increased. These patients should be monitored closely for the onset or increase in severity of the common adverse events (dry mouth, somnolence, asthenia and dizziness) as indicators of potential overdose.



USE IN WOMEN TAKING ORAL CONTRACEPTIVES


Because drug interaction studies of tizanidine with oral contraceptives have shown that concomitant use may reduce the clearance of tizanidine by as much as 50%, concomitant use of tizanidine with oral contraceptives should ordinarily be avoided (see CLINICAL PHARMACOLOGY: Drug Interactions). However, if concomitant use is clinically necessary, the starting dose and subsequent titration rate of tizanidine should be reduced.



DISCONTINUING THERAPY


If therapy needs to be discontinued, particularly in patients who have been receiving high doses for long periods, the dose should be decreased slowly to minimize the risk of withdrawal and rebound hypertension, tachycardia, and hypertonia.



INFORMATION FOR PATIENTS


Patients should be advised of the limited clinical experience with tizanidine both in regard to duration of use and the higher doses required to reduce muscle tone (see WARNINGS).


Because of the possibility of tizanidine lowering blood pressure, patients should be warned about the risk of clinically significant orthostatic hypotension (see WARNINGS).


Because of the possibility of sedation, patients should be warned about performing activities requiring alertness, such as driving a vehicle or operating machinery (see WARNINGS). Patients should also be instructed that the sedation may be additive when tizanidine is taken in conjunction with drugs (baclofen, benzodiazepines) or substances (e.g., alcohol) that act as CNS depressants.


Patients should be advised of the change in the absorption profile of tizanidine if taken with food and the potential changes in efficacy and adverse effect profiles that may result (see CLINICAL PHARMACOLOGY: Pharmacokinetics).


Patients should be advised not to stop tizanidine suddenly as rebound hypertension and tachycardia may occur (see PRECAUTIONS: Discontinuing Therapy).


Tizanidine should be used with caution where spasticity is utilized to sustain posture and balance in locomotion or whenever spasticity is utilized to obtain increased function.


Because of the potential for the increased risk of serious adverse reactions including severe lowering of blood pressure and sedation when tizanidine and either fluvoxamine or ciprofloxacin are used together, tizanidine should not be used with either fluvoxamine or ciprofloxacin. Because of the potential for interaction with other CYP1A2 inhibitors, patients should be instructed to inform their physicians and pharmacists when any medication is added or removed from their regimen.



DRUG INTERACTIONS


In vitro studies of cytochrome P450 isoenzymes using human liver microsomes indicate that neither tizanidine nor the major metabolites are likely to affect the metabolism of other drugs metabolized by cytochrome P450 isoenzymes.


Fluvoxamine

The effect of fluvoxamine on the pharmacokinetics of a single 4 mg dose of tizanidine was studied in 10 healthy subjects. The Cmax, AUC, and half-life of tizanidine increased by 12-fold, 33-fold, and 3-fold, respectively. These changes resulted in significantly decreased blood pressure, increased drowsiness, and increased psychomotor impairment. (See CONTRAINDICATIONS and WARNINGS.)


Ciprofloxacin

The effect of ciprofloxacin on the pharmacokinetics of a single 4 mg dose of tizanidine was studied in 10 healthy subjects. The Cmax and AUC of tizanidine increased by 7-fold and 10-fold, respectively. These changes resulted in significantly decreased blood pressure, increased drowsiness, and increased psychomotor impairment. (See CONTRAINDICATIONS and WARNINGS.)


CYP1A2 inhibitors

The interaction between tizanidine and either fluvoxamine or ciprofloxacin is most likely due to inhibition of CYP1A2 by fluvoxamine or ciprofloxacin. Although there have been no clinical studies evaluating the effects of other CYP1A2 inhibitors on tizanidine, other CYP1A2 inhibitors, including zileuton, other fluroquinolones, antiarrythmics (amiodarone, mexiletine, propafenone, and verapamil), cimetidine and famotidine, oral contraceptives, acyclovir, and ticlopidine may also lead to substantial increases in tizanidine blood concentrations. Concomitant use of tizanidine with CYP1A2 inhibitors should ordinarily be avoided. If their use is clinically necessary, they should be used with caution (see WARNINGS).


Acetaminophen

Tizanidine delayed the Tmax of acetaminophen by 16 minutes. Acetaminophen did not affect the pharmacokinetics of tizanidine.


Alcohol

Alcohol increased the AUC of tizanidine by approximately 20%, while also increasing its Cmax by approximately 15%. This was associated with an increase in side effects of tizanidine. The CNS depressant effects of tizanidine and alcohol are additive.


Oral Contraceptives

No specific pharmacokinetic study was conducted to investigate interaction between oral contraceptives and tizanidine, but retrospective analysis of population pharmacokinetic data following single and multiple dose administration of 4 mg tizanidine showed that women concurrently taking oral contraceptives had 50% lower clearance of tizanidine that women not on oral contraceptives.



CARCINOGENESIS, MUTAGENESIS, IMPAIRMENT OF FERTILITY


No evidence for carcinogenicity was seen in two dietary studies in rodents. Tizanidine was administered to mice for 78 weeks at doses up to 16 mg/kg, which is equivalent to 2 times the maximum recommended human dose on a mg/m2 basis. Tizanidine was also administered to rats for 104 weeks at doses up to 9 mg/kg, which is equivalent to 2.5 times the maximum recommended human dose on a mg/m2 basis. There was no statistically significant increase in tumors in either species.


Tizanidine was not mutagenic or clastogenic in the following in vitro assays: the bacterial Ames test and the mammalian gene mutation test and chromosomal aberration test in Chinese hamster cells. It was also negative in the following in vivo assays: the bone marrow micronucleus test in mice, the bone marrow micronucleus and cytogenicity test in Chinese hamsters, the dominant lethal mutagenicity test in mice, and the unscheduled DNA synthesis (UDS) test in mice.


Tizanidine did not affect fertility in male rats at doses of 10 mg/kg, approximately 2.7 times the maximum recommended human dose on a mg/m2 basis, and in females at doses of 3 mg/kg, approximately equal to the maximum recommended human dose on a mg/m2 basis; fertility was reduced in males receiving 30 mg/kg (8 times the maximum recommended human dose on a mg/m2 basis) and in females receiving 10 mg/kg (2.7 times the maximum recommended human dose on a mg/m2 basis). At these doses, maternal behavioral effects and clinical signs were observed including marked sedation, weight loss, and ataxia.



PREGNANCY


Pregnancy Category C

Reproduction studies performed in rats at a dose of 3 mg/kg, equal to the maximum recommended human dose on a mg/m2 basis, and in rabbits at 30 mg/kg, 16 times the maximum recommended human dose on a mg/m2 basis, did not show evidence of teratogenicity. Tizanidine at doses that are equal to and up to 8 times the maximum recommended human dose on a mg/m2 basis increased gestation duration in rats. Prenatal and postnatal pup loss was increased and developmental retardation occurred. Post-implantation loss was increased in rabbits at doses of 1 mg/kg or greater, equal to or greater than 0.5 times the maximum recommended human dose on a mg/m2 basis. Tizanidine has not been studied in pregnant women. Tizanidine should be given to pregnant women only if clearly needed.



LABOR AND DELIVERY


The effect of tizanidine on labor and delivery in humans is unknown.



NURSING MOTHERS


It is not known whether tizanidine is excreted in human milk, although as a lipid soluble drug, it might be expected to pass into breast milk.



GERIATRIC USE


Tizanidine should be used with caution in elderly patients because clearance is decreased four-fold.



PEDIATRIC USE


There are no adequate and well-controlled studies to document the safety and efficacy of tizanidine in children.



Adverse Reactions


In multiple dose, placebo-controlled clinical studies, 264 patients were treated with tizanidine and 261 with placebo. Adverse events, including severe adverse events, were more frequently reported with tizanidine than with placebo.



COMMON ADVERSE EVENTS LEADING TO DISCONTINUATION


Forty-five of 264 (17%) patients receiving tizanidine and 13 of 261 (5%) of patients receiving placebo in three multiple dose, placebo-controlled clinical studies, discontinued treatment for adverse events. When patients withdrew from the study, they frequently had more than one reason for discontinuing. The adverse events most frequently leading to withdrawal of tizanidine treated patients in the controlled clinical studies were asthenia (weakness, fatigue and/or tiredness) (3%), somnolence (3%), dry mouth (3%), increased spasm or tone (2%), and dizziness (2%).



MOST FREQUENT ADVERSE CLINICAL EVENTS SEEN IN ASSOCIATION WITH THE USE OF TIZANIDINE


In multiple dose, placebo-controlled clinical studies involving 264 patients with spasticity, the most frequent adverse effects were dry mouth, somnolence/sedation, asthenia (weakness, fatigue and/or tiredness) and dizziness. Three-quarters of the patients rated the events as mild to moderate and one-quarter of the patients rated the events as being severe. These events appeared to be dose related.



ADVERSE EVENTS REPORTED IN CONTROLLED STUDIES


The events cited reflect experience gained under closely monitored conditions of clinical studies in a highly selected patient population. In actual clinical practice or in other clinical studies, these frequency estimates may not apply, as the conditions of use, reporting behavior, and the kinds of patients treated may differ. Table 1 lists treatment emergent signs and symptoms that were reported in greater than 2% of patients in three multiple dose, placebo-controlled studies who received tizanidine where the frequency in the tizanidine group was at least as common as in the placebo group. These events are not necessarily related to tizanidine treatment. For comparison purposes, the corresponding frequency of the event (per 100 patients) among placebo treated patients is also provided.





























































Table 1: Multiple Dose, Placebo-Controlled Studies—Frequent (> 2%) Adverse Events Reported for Which Tizanidine Tablets Incidence is Greater than Placebo
EventPlacebo

N = 261

%
Tizanidine Tablet

N = 264

%

*

(weakness, fatigue, and/or tiredness)

 Dry mouth 10 49
 Somnolence 10 48
 Asthenia* 16 41
 Dizziness 4 16
 UTI 7 10
 Infection 5 6
 Constipation 1 4
 Liver function tests abnormal <1 3
 Vomiting 0 3
 Speech disorder 0 3
 Amblyopia (blurred vision) <1 3
 Urinary frequency 2 3
 Flu syndrome 2 3
 SGPT/ALT increased <1 3
 Dyskinesia 0 3
 Nervousness <1 3
 Pharyngitis 1 3
 Rhinitis 2 3

In the single dose, placebo-controlled study involving 142 patients with spasticity, the patients were specifically asked if they had experienced any of the four most common adverse events: dry mouth, somnolence (drowsiness), asthenia (weakness, fatigue and/or tiredness) and dizziness. In addition, hypotension and bradycardia were observed. The occurrence of these adverse effects is summarized in Table 2. Other events were, in general, reported at a rate of 2% or less.
































Table 2: Single Dose, Placebo-Controlled Study—Common Adverse Events Reported
EventPlacebo

N = 48

%
Tizanidine Tablet,

8mg, N = 45

%
Tizanidine Tablet,

16 mg, N = 49

%

*

(weakness, fatigue, and/or tiredness)

 Somnolence 31 78 92
 Dry mouth 35 76 88
 Asthenia* 40 67 78
 Dizziness 4 22 45
 Hypotension 0 16 33
 Bradycardia 0 2 10

OTHER ADVERSE EVENTS OBSERVED DURING THE EVALUATION OF TIZANIDINE


Tizanidine was administered to 1385 patients in additional clinical studies where adverse event information was available. The conditions and duration of exposure varied greatly, and included (in overlapping categories) double-blind and open-label studies, uncontrolled and controlled studies, inpatient and outpatient studies, and titration studies. Untoward events associated with this exposure were recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of untoward events into a smaller number of standardized event categories.


In the tabulations that follow, reported adverse events were classified using a standard COSTART-based dictionary terminology. The frequencies presented, therefore, represent the proportion of the 1385 patients exposed to tizanidine who experienced an event of the type cited on at least one occasion while receiving tizanidine. All reported events are included except those already listed in Table 1. If the COSTART term for an event was so general as to be uninformative, it was replaced by a more informative term. It is important to emphasize that, although the events reported occurred during treatment with tizanidine, they were not necessarily caused by it.


Events are further categorized by body system and listed in order of decreasing frequency according to the following definitions: frequent adverse events are those occurring on one or more occasions in at least 1/100 patients (only those not already listed in the tabulated results from placebo-controlled studies appear in this listing); infrequent adverse events are those occurring in 1/100 to 1/1000 patients; rare adverse events are those occurring in fewer than 1/1000 patients.









BODY AS A WHOLE
 Frequent: Fever
 Infrequent: Allergic reaction, moniliasis, malaise, abscess, neck pain, sepsis, cellulites, death, overdose
 Rare: Carcinoma, congenital anomaly, suicide attempt





CARDIOVASCULAR SYSTEM
 Infrequent: Vasodilatation, postural hypotension, syncope, migraine, arrhythmia
 Rare: Angina pectoris, coronary artery disorder, heart failure, myocardial infarct, phlebitis, pulmonary embolus, ventricular extrasystoles, ventricular tachycardia







DIGESTIVE SYSTEM
 Frequent: Abdomen pain, diarrhea, dyspepsia
 Infrequent: Dysphagia, cholelithiasis, fecal impaction, flatulence, gastrointestinal hemorrhage, hepatitis,  melena
 Rare: Gastroenteritis, hematemesis, hepatoma, intestinal obstruction, liver damage





HEMIC AND LYMPHATIC SYSTEM
 Infrequent: Ecchymosis, hypercholesteremia, anemia, hyperlipemia, leukopenia, leukocytosis, sepsis
 Rare: Petechia, purpura, thrombocythemia, thrombocytopenia





METABOLIC AND NUTRITIONAL SYSTEM
 Infrequent: Edema, hypothyroidism, weight loss
 Rare: Adrenal cortex insufficiency, hyperglycemia, hypokalemia, hyponatremia, hypoproteinemia, respiratory acidosis





MUSCULOSKELETAL SYSTEM
 Frequent: Myasthenia, back pain
 Infrequent: Pathological fracture, arthralgia, arthritis, bursitis







NERVOUS SYSTEM
 Frequent: Depression, anxiety, paresthesia
 Infrequent: Tremor, emotional lability, convulsion, paralysis, thinking abnormal, vertigo, abnormal dreams, agitation, depersonalization, euphoria, migraine, stupor, dysautonomia, neuralgia
 Rare: Dementia, hemiplegia, neuropathy


RESPIRATORY SYSTEM
 Infrequent: Sinusitis, pneumonia, bronch

Friday 21 September 2012

Ampicillin Capsules




Ampicillin Capsules, USP

To reduce the development of drug-resistant bacteria and maintain the effectiveness of ampicillin and other antibacterial drugs, ampicillin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.



Ampicillin Capsules Description


Ampicillin trihydrate is a semisynthetic penicillin derived from the basic penicillin nucleus, 6- aminopenicillanic acid. Ampicillin is designated chemically as (2S, 5R, 6R)-6-[(R)-2-Amino-2-phenylacetamido]-3,3- dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0] heptane-2- carboxylic acid. Its structural formula is:



Ampicillin Capsules, USP for oral administration provide ampicillin trihydrate equivalent to 250 mg and 500 mg ampicillin. Inactive ingredients: black iron oxide, gelatin, magnesium stearate and titanium dioxide.



Ampicillin Capsules - Clinical Pharmacology


Ampicillin is bactericidal at low concentrations and is clinically effective not only against the gram-positive organisms usually susceptible to penicillin G but also against a variety of gram-negative organisms. It is stable in the presence of gastric acid and is well absorbed from the gastrointestinal tract. It diffuses readily into most body tissues and fluids; however, penetration into the cerebrospinal fluid and brain occurs only with meningeal inflammation. Ampicillin is excreted largely unchanged in the urine; its excretion can be delayed by concurrent administration of probenecid which inhibits the renal tubular secretion of ampicillin. In blood serum, ampicillin is the least bound of all the penicillins; an average of about 20 percent of the drug is bound to plasma proteins as compared to 60 to 90 percent of the other penicillins. The administration of 500 mg dose of Ampicillin Capsules results in an average peak blood serum level of approximately 3.0 mcg/mL.


Microbiology: While in vitro studies have demonstrated the susceptibility of most strains of the following organisms, clinical efficacy for infections other than those included in the INDICATIONS AND USAGE section has not been documented.


GRAM-POSITIVE – strains of alpha- and beta-hemolytic streptococci, Streptococcus pneumoniae, those strains of staphylococci, which do not produce penicillinase, Clostridium sp., Bacillus anthracis, Corynebacterium xeroses, and most strains of enterococci.


GRAM-NEGATIVE – Hemophilus influenzae; Neisseria gonorrhoeae and N. Meningitides; Proteus mirabilis, and many strains of Salmonella (including S. typhosa), Shigella, and Escherichia coli.


NOTE: Ampicillin is inactivated by penicillinase and therefore is ineffective against penicillinase-producing organisms including certain strains of staphylococci, Pseudomonas aeruginosa, P. Vulgaris, Klebsiella pneumoniae, Enterobacter aerogenes, and some strains of E. coli. Ampicillin is not active against Rickettsia, Mycoplasma, and “large viruses” (Miyagawanella).


TESTING FOR SUSCEPTIBILITY: The invading organism should be cultured and its susceptibility demonstrated as a guide to therapy. If the Kirby-Bauer method of disc susceptibility is used, a 10 mcg ampicillin disc should be used to determine the relative in vitro susceptibility.



Indications and Usage for Ampicillin Capsules


Ampicillin Capsules, USP are indicated in the treatment of infections caused by susceptible strains of the designated organism listed below:


INFECTIONS OF THE GENITOURINARY TRACT INCLUDING GONORRHEA: E. coli, P. mirabilis, enterococci, Shigella, S. typhosa and other Salmonella, and nonpenicillinaseproducing N. gonorrhoeae.


INFECTIONS OF THE RESPIRATORY TRACT: Nonpenicillinase- producing H. influenzae and staphylococci, and streptococci including streptococcus pneumoniae.


INFECTIONS OF THE GASTROINTESTINAL TRACT:


Shigella, S. typhosa and other Salmonella, E. coli, P. mirabilis, and enterococci.


MENINGITIS: N. Meningitides.


To reduce the development of drug-resistant bacteria and maintain the effectiveness of ampicillin and other antibacterial drugs, ampicillin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.


Bacteriology studies to determine the causative organisms and their susceptibility to ampicillin should be performed. Therapy may be instituted prior to the results of susceptibility testing.



Contraindications


A history of a previous hypersensitivity reaction to any of the penicillins is a contraindication. Ampicillin is also contraindicated in infections caused by penicillinase-producing organisms.



Warnings


SERIOUS AND OCCASIONAL FATAL HYPERSENSITIVITY (ANAPHYLACTOID) REACTIONS HAVE BEEN REPORTED IN PATIENTS ON PENICILLIN THERAPY. ALTHOUGH ANAPHYLAXIS IS MORE FREQUENT FOLLOWING PARENTERAL ADMINISTRATION, IT HAS OCCURRED IN PATIENTS ON ORAL PENICILLINS. THESE REACTIONS ARE MORE LIKELY TO OCCUR IN INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY AND/OR A HISTORY OF SENSITIVITY TO MULTIPLE ALLERGENS.


THERE HAVE BEEN REPORTS OF INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY WHO HAVE EXPERIENCED SEVERE HYPERSENSITIVITY REACTIONS WHEN TREATED WITH CEPHALOSPORINS. BEFORE INITIATING THERAPY WITH ANY PENICILLIN, CAREFUL INQUIRY SHOULD BE MADE CONCERNING PREVIOUS HYPERSENSITIVITY REACTIONS TO PENICILLINS, CEPHALOSPORINS, AND OTHER ALLERGENS. IF AN ALLERGIC REACTION OCCURS, THE DRUG SHOULD BE DISCONTINUED AND APPROPRIATE THERAPY INSTITUTED. SERIOUS ANAPHYLACTOID REACTIONS REQUIRE IMMEDIATE EMERGENCY TREATMENT WITH EPINEPHRINE. OXYGEN, INTRAVENOUS STEROIDS, AND AIRWAY MANAGEMENT, INCLUDING INTUBATION, SHOULD ALSO BE ADMINISTERED AS INDICATED.


Pseudomembranous colitis has been reported with nearly all antibacterial agents, including ampicillin, and may range in severity from mild to life-threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhea subsequent to the administration of antibacterial agents.


Treatment with antibacterial agents alters the normal flora of the colon and may permit overgrowth of clostridia. Studies indicate that a toxin produced by clostridium difficile, is one primary cause of “antibiotic-associated colitis”.


After the diagnosis of pseudomembranous colitis has been established, therapeutic measures should be initiated. Mild cases of pseudomembranous colitis usually respond to drug discontinuation alone. In moderate to severe cases, consideration should be given to management with fluids and electrolytes, protein supplementation and treatment with an antibacterial drug clinically effective against C. difficile colitis.



Precautions



General


Prolonged use of antibiotics may promote the overgrowth of nonsusceptible organisms, including fungi. Should superinfection occur, appropriate measures should be taken.


Patients with gonorrhea who also have syphilis should be given additional appropriate parenteral penicillin treatment.


Treatment with ampicillin does not preclude the need for surgical procedures, particularly in staphylococcal infections.


Prescribing ampicillin in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.



Information For The Patient


  1. The patient should inform the physician of any history of sensitivity to allergens, including previous hypersensitivity reactions to penicillins and cephalosporins (see WARNINGS).

  2. The patient should discontinue ampicillin and contact the physician immediately if any side effect occurs (see WARNINGS).

  3. Ampicillin should be taken with a full glass (8 oz) of water, one-half hour before or two hours after meals.

  4. Diabetic patients should consult with the physician before changing diet or dosage of diabetes medication (see PRECAUTIONS–Drug/Laboratory Test Interactions).

  5. Patients should be counseled that antibacterial drugs including ampicillin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When ampicillin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may: (1) decrease the effectiveness of the immediate treatment, and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by ampicillin or other antibacterial drugs in the future.


Laboratory Tests


In prolonged therapy, and particularly with high dosage regimens, periodic evaluation of the renal, hepatic, and hematopoietic systems is recommended.


In streptococcal infections, therapy, must be sufficient to eliminate the organism (10 days minimum); otherwise the sequelae of streptococcal disease may occur. Cultures should be taken following completion of treatment to determine whether streptococci have been eradicated.


Cases of gonococcal infection with a suspected lesion of syphilis should have darkfield examinations ruling out syphilis before receiving ampicillin. Patients who do not have suspected lesions of syphilis and are treated with ampicillin should have a follow-up serologic test for syphilis each month for four months to detect syphilis that may have been masked for treatment for gonorrhea.



Drug Interactions


When administered concurrently, the following drugs may interact with ampicillin.


ALLOPURINOL: Increased possibility of skin rash, particularly in hyperuricemic patients may occur.


BACTERIOSTATIC ANTIBIOTICS: Chloramphenicol, erythromycins, sulfonamides, or tetracyclines may interfere with the bactericidal effect of penicillins. This has been demonstrated in vitro; however, the clinical significance of this interaction is not well-documented.


ORAL CONTRACEPTIVES: May be less effective and increased breakthrough bleeding may occur.


PROBENECID: May decrease renal tubular secretion of ampicillin resulting in increased blood levels and/or ampicillin toxicity.



Drug/Laboratory Test Interaction


After treatment with ampicillin, a false-positive reaction for glucose in the urine may occur with copper sulfate tests (Benedict’s solution, Fehling’s solution, or Clinitest® tablets) but not with enzyme based tests such as Clinistix® and Tes-Tape®.



Carcinogenesis, Mutagenesis, Impairment of Fertility


Long-term studies in animals have not been performed to evaluate carcinogenesis, mutagenesis, or impairment of fertility in males or females.



Pregnancy


Teratogenic Effects

Category B


Reproduction studies in animals have revealed no evidence of impaired fertility or harm to the fetus due to penicillin. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, penicillin should be used during pregnancy only if clearly needed.



Labor and Delivery


Oral ampicillin-class antibiotics are poorly absorbed during labor. Studies in guinea pigs showed that intravenous administration of ampicillin slightly decreased the uterine tone and frequency of contractions, but moderately increased the height and duration of contractions. However, it is not known whether use of these drugs in humans during labor or delivery has immediate or delayed adverse effects on the fetus, prolongs the duration of labor, or increases the likelihood that forceps delivery or other obstetrical intervention or resuscitation of the newborn will be necessary.



Nursing Mothers


Ampicillin-class antibiotics are excreted in milk. Ampicillin used by nursing mothers may lead to sensitization of infants; therefore, a decision should be made whether to discontinue nursing or to discontinue ampicillin, taking into account the importance of the drug to the mother.



Pediatric Use


Penicillins are excreted primarily unchanged by the kidney; therefore, the incompletely developed renal function in neonates and young infants will delay the excretion of penicillin. Administration to neonates and young infants should be limited to the lowest dosage compatible with an effective therapeutic regimen (see DOSAGE AND ADMINISTRATION).



Adverse Reactions


As with other penicillins, it may be expected that untoward reactions will be essentially limited to sensitivity phenomena. They are more likely to occur in individuals who have previously demonstrated hypersensitivity to penicillin and in those with a history of allergy, asthma, hay fever, or urticaria.


The following adverse reactions have been reported as associated with the use of ampicillin:


GASTROINTESTINAL: glossitis, stomatitis, nausea, vomiting, enterocolitis, pseudomembranous colitis, and diarrhea. These reactions are usually associated with oral dosage forms of the drugs.


HYPERSENSITIVITY REACTIONS: An erythematous, mildly pruritic, maculopapular skin rash has been reported fairly frequently . The rash, which usually does not develop within the first week of therapy, may cover the entire body including the soles, palms, and oral mucosa. The eruption usually disappears in three to seven days. Other hypersensitivity reactions that have been reported are: skin rash, pruritus, urticaria, erythema multiforme, and an occasional case of exfoliative dermatitis. Anaphylaxis is the most serious reaction experienced and has usually been associated with the parenteral dosage form of the drug.


NOTE: Urticaria, other skin rashes, and serum sicknesslike reactions may be controlled by antihistamines, and, if necessary, systemic corticosteroids. Whenever such reactions occur, ampicillin should be discontinued unless, in the opinion of the physician, the condition being treated is life-threatening, and amenable only to ampicillin therapy. Serious anaphylactoid reactions require emergency measures (see WARNINGS).


LIVER: Moderate elevation in serum glutamic oxaloacetic transaminase (SGOT) has been noted, but the significance of this finding is unknown.


HEMIC AND LYMPHATIC SYSTEMS: Anemia, thrombocytopenia, thrombocytopenic purpura, eosinophilia, leukopenia, and agranulocytosis have been reported during therapy with penicillins. These reactions are usually reversible on discontinuation of therapy and are believed to be hypersensitivity phenomena.


Other adverse reactions that have been reported with the use of ampicillin are laryngeal stridor and high fever. An occasional patient may complain of sore mouth or tongue as with any oral penicillin preparation.


(See Reverse)



Overdosage


In case of overdosage, discontinue medication, treat symptomatically and institute supportive measures as required. In patients with renal function impairment, ampicillin-class antibiotics can be removed by hemodialysis but not by peritoneal dialysis.



Ampicillin Capsules Dosage and Administration


ADULTS AND CHILDREN WEIGHING OVER 20 KG:


For genitourinary or gastrointestinal tract infections other than gonorrhea in men and women, the usual dose is 500 mg qid in equally spaced doses; severe or chronic infections may require larger doses. For the treatment of gonorrhea in both men and women, a single oral dose of 3.5 grams of ampicillin administered simultaneously with 1 gram of probenecid is recommended. Physicians are cautioned to use no less than the above recommended dosage for the treatment of gonorrhea. Follow-up cultures should be obtained from the original site(s) of infection 7 to 14 days after therapy. In women, it is also desirable to obtain culture test-of-cure from both the endocervical and anal canals. Prolonged intensive therapy is needed for complications such as prostatitis and epididymitis.


For respiratory tract infections, the usual dose is 250 mg qid in equally spaced doses.


CHILDREN WEIGHING 20 KG OR LESS:


For genitourinary or gastrointestinal tract infections, the usual dose is 100 mg/kg/day total, qid in equally divided and spaced doses. For respiratory infections, the usual dose is 50 mg/kg/day total, in equally divided and spaced doses three to four times daily. Doses for children should not exceed doses recommended for adults.


ALL PATIENTS, IRRESPECTIVE OF AGE AND WEIGHT:


Larger doses may be required for severe or chronic infections. Although ampicillin is resistant to degradation by gastric acid, it should be administered at least one-half hour before or two hours after meals for maximal absorption. Except for the single dose regimen for gonorrhea referred to above, therapy should be continued for a minimum of 48 to 72 hours after the patient becomes asymptomatic or evidence of bacterial eradication has been obtained. In infections caused by hemolytic strains of streptococci, a minimum of 10 days’ treatment is recommended to guard against the risk of rheumatic fever of glomerulonephritis (see PRECAUTIONS–Laboratory Tests). In the treatment of chronic urinary or gastrointestinal infections, frequent bacteriologic and clinical appraisal is necessary during therapy and may be necessary for several months afterwards. Stubborn infections may require treatment for several weeks. Smaller doses than those indicated above should not be used.



How is Ampicillin Capsules Supplied


Ampicillin Capsules, USP: Each capsule, for oral administration, contains ampicillin trihydrate equivalent to 250 mg or 500 mg ampicillin, and are supplied as:


250 mg: white, opaque, hard gelatin capsules, imprinted in black ink GG 850/GG 850.


NDC 0781-2144-01 in bottles of 100


NDC 0781-2144-05 in bottles of 500


500 mg: white, opaque, hard gelatin capsules, imprinted in black ink GG 851/GG 851.


NDC 0781-2145-01 in bottles of 100


NDC 0781-2145-05 in bottles of 500



Store at 20°-25°C (68°- 77°F) (see USP Controlled Room Temperature).


Dispense in a tight container.



Rev. 11-2006


8077


399658


Manufactured in Austria by Sandoz GmbH


for Sandoz Inc., Princeton, NJ 08540



mg Label


NDC 0781-2144-01


Ampicillin


Capsules, USP


250 mg


Rx only


100 Capsules


SANDOZ




mg Label


NDC 0781-2145-01


Ampicillin


Capsules, USP


500 mg


Rx only


100 Capsules


SANDOZ










AMPICILLIN 
ampicillin  capsule










Product Information
Product TypeHUMAN PRESCRIPTION DRUGNDC Product Code (Source)0781-2144
Route of AdministrationORALDEA Schedule    








Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
AMPICILLIN TRIHYDRATE (AMPICILLIN)AMPICILLIN250 mg


























Inactive Ingredients
Ingredient NameStrength
MAGNESIUM STEARATE 
TITANIUM DIOXIDE 
GELATIN 
FERROSOFERRIC OXIDE 
ISOPROPYL ALCOHOL 
BUTYL ALCOHOL 
PROPYLENE GLYCOL 
POTASSIUM HYDROXIDE 
AMMONIA 
ALCOHOL 
SHELLAC 


















Product Characteristics
ColorWHITE (opaque)Scoreno score
ShapeCAPSULESize18mm
FlavorImprint CodeGG850;GG850
Contains      














Packaging
#NDCPackage DescriptionMultilevel Packaging
10781-2144-01100 CAPSULE In 1 BOTTLENone
20781-2144-05500 CAPSULE In 1 BOTTLENone










Marketing Information
Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
ANDAANDA06408208/29/1995







AMPICILLIN 
ampicillin  capsule










Product Information
Product TypeHUMAN PRESCRIPTION DRUGNDC Product Code (Source)0781-2145
Route of AdministrationORALDEA Schedule    








Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
AMPICILLIN TRIHYDRATE (AMPICILLIN)AMPICILLIN500 mg


























Inactive Ingredients
Ingredient NameStrength
MAGNESIUM STEARATE 
TITANIUM DIOXIDE 
GELATIN 
FERROSOFERRIC OXIDE 
ISOPROPYL ALCOHOL 
BUTYL ALCOHOL 
PROPYLENE GLYCOL 
POTASSIUM HYDROXIDE 
AMMONIA 
ALCOHOL 
SHELLAC 


















Product Characteristics
ColorWHITE (opaque)Scoreno score
ShapeCAPSULESize22mm
FlavorImprint CodeGG851;GG851
Contains      














Packaging
#NDCPackage DescriptionMultilevel Packaging
10781-2145-01100 CAPSULE In 1 BOTTLENone
20781-2145-05500 CAPSULE In 1 BOTTLENone










Marketing Information
Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
ANDAANDA06408208/29/1995


Labeler - Sandoz Inc (110342024)
Revised: 01/2012Sandoz Inc

Monday 17 September 2012

Zonisamide Capsules




Zonisamide Capsules USP

Rx Only



Zonisamide Capsules Description


Zonisamide USP is an antiseizure drug chemically classified as a sulfonamide and unrelated to other antiseizure agents. The active ingredient is zonisamide USP, 1,2-benzisoxazole-3-methanesulfonamide. The empirical formula is C8H8N2O3S with a molecular weight of 212.23. Zonisamide USP is a white powder, pKa = 10.2, and is moderately soluble in water (0.80 mg/mL) and 0.1 N HCl (0.50 mg/mL).


The chemical structure is:



Zonisamide is supplied for oral administration as capsules containing 25 mg, 50 mg or 100 mg zonisamide USP. Each capsule contains the labeled amount of zonisamide USP plus the following inactive ingredients: microcrystalline cellulose, hydrogenated vegetable oil, sodium lauryl sulfate, gelatin and colorants. The printed capsule shell of the different strengths is made from the following ingredients:


25 mg – D&C Red #28, FD&C Blue #1, gelatin and titanium dioxide


50 mg – D&C Yellow #10, FD&C Blue #1, FD&C Red #40, gelatin and titanium dioxide


100 mg - D&C Yellow #10, FD&C Blue #1, FD&C Yellow #6, gelatin and titanium dioxide


The dyes used in the printing ink are FD&C Blue #1, FD&C Blue #2, FD&C Red #40, D&C Yellow #10 aluminium lake and iron oxide black. Additionally, the printing ink also contains n-butyl alcohol, ethanol, methanol, propylene glycol and shellac.



Zonisamide Capsules - Clinical Pharmacology



Mechanism of Action:


The precise mechanism(s) by which zonisamide exerts its antiseizure effect is unknown. Zonisamide demonstrated anticonvulsant activity in several experimental models. In animals, zonisamide was effective against tonic extension seizures induced by maximal electroshock but ineffective against clonic seizures induced by subcutaneous pentylenetetrazol. Zonisamide raised the threshold for generalized seizures in the kindled rat model and reduced the duration of cortical focal seizures induced by electrical stimulation of the visual cortex in cats. Furthermore, zonisamide suppressed both interictal spikes and the secondarily generalized seizures produced by cortical application of tungstic acid gel in rats or by cortical freezing in cats. The relevance of these models to human epilepsy is unknown.


Zonisamide may produce these effects through action at sodium and calcium channels. In vitro pharmacological studies suggest that zonisamide blocks sodium channels and reduces voltage-dependent, transient inward currents (T-type Ca2+ currents), consequently stabilizing neuronal membranes and suppressing neuronal hypersynchronization. In vitro binding studies have demonstrated that zonisamide binds to the GABA/benzodiazepine receptor ionophore complex in an allosteric fashion which does not produce changes in chloride flux. Other in vitro studies have demonstrated that zonisamide (10 to 30 mcg/mL) suppresses synaptically-driven electrical activity without affecting postsynaptic GABA or glutamate responses (cultured mouse spinal cord neurons) or neuronal or glial uptake of [3H]-GABA (rat hippocampal slices). Thus, zonisamide does not appear to potentiate the synaptic activity of GABA. In vivo microdialysis studies demonstrated that zonisamide facilitates both dopaminergic and serotonergic neurotransmission. Zonisamide is a carbonic anhydrase inhibitor. The contribution of this pharmacological action to the therapeutic effects of zonisamide is unknown. However, as a carbonic anhydrase inhibitor, zonisamide may cause metabolic acidosis (see WARNINGS, Metabolic Acidosis subsection).



Pharmacokinetics:


Following a 200 to 400 mg oral zonisamide dose, peak plasma concentrations (range: 2 to 5 mcg/mL) in normal volunteers occur within 2 to 6 hours. In the presence of food, the time to maximum concentration is delayed, occurring at 4 to 6 hours, but food has no effect on the bioavailability of zonisamide.


Zonisamide extensively binds to erythrocytes, resulting in an eight-fold higher concentration of zonisamide in red blood cells (RBC) than in plasma. The pharmacokinetics of zonisamide are dose proportional in the range of 200 to 400 mg, but the Cmax and AUC increase disproportionately at 800 mg, perhaps due to saturable binding of zonisamide to RBC. Once a stable dose is reached, steady state is achieved within 14 days. The elimination half-life of zonisamide in plasma is about 63 hours. The elimination half-life of zonisamide in RBC is approximately 105 hours.


The apparent volume of distribution (V/F) of zonisamide is about 1.45 L/kg following a 400 mg oral dose. Zonisamide, at concentrations of 1.0 to 7.0 mcg/mL, is approximately 40% bound to human plasma proteins. Protein binding of zonisamide is unaffected in the presence of therapeutic concentrations of phenytoin, phenobarbital or carbamazepine.



Metabolism and Excretion:


Following oral administration of 14C-zonisamide to healthy volunteers, only zonisamide was detected in plasma. Zonisamide is excreted primarily in urine as parent drug and as the glucuronide of a metabolite. Following multiple dosing, 62% of the 14C dose was recovered in the urine, with 3% in the feces by day 10. Zonisamide undergoes acetylation to form N-acetyl zonisamide and reduction to form the open ring metabolite, 2–sulfamoylacetyl phenol (SMAP). Of the excreted dose, 35% was recovered as zonisamide, 15% as N-acetyl zonisamide, and 50% as the glucuronide of SMAP. Reduction of zonisamide to SMAP is mediated by cytochrome P450 isozyme 3A4 (CYP3A4). Zonisamide does not induce its own metabolism. Plasma clearance of zonisamide is approximately 0.30–0.35 mL/min/kg in patients not receiving enzyme-inducing antiepilepsy drugs (AEDs). The clearance of zonisamide is increased to 0.5 mL/min/kg in patients concurrently on enzyme-inducing AEDs.


Renal clearance is about 3.5 mL/min. The clearance of an oral dose of zonisamide from RBC is 2 mL/min.



Special Populations:


Renal Insufficiency:

Single 300 mg zonisamide doses were administered to three groups of volunteers. Group 1 was a healthy group with a creatinine clearance ranging from 70–152 mL/min. Group 2 and Group 3 had creatinine clearances ranging from 14.5–59 mL/min and 10–20 mL/min, respectively. Zonisamide renal clearance decreased with decreasing renal function (3.42, 2.50, 2.23 mL/min, respectively).


Marked renal impairment (creatinine clearance < 20 mL/min) was associated with an increase in zonisamide AUC of 35% (see DOSAGE AND ADMINISTRATIONsection).


Hepatic Disease:

The pharmacokinetics of zonisamide in patients with impaired liver function have not been studied (see DOSAGE AND ADMINISTRATION section).


Age:

The pharmacokinetics of a 300 mg single dose of zonisamide was similar in young (mean age 28 years) and elderly subjects (mean age 69 years).


Gender and Race:

Information on the effect of gender and race on the pharmacokinetics of zonisamide is not available.



Interactions of Zonisamide with Other Antiepilepsy Drugs (AEDs):


Concurrent medication with drugs that either induce or inhibit CYP3A4 may alter serum concentrations of zonisamide. Concomitant administration of phenytoin and carbamazepine increases zonisamide plasma clearance from 0.30-0.35 mL/min/kg to 0.35–0.5 mL/min/kg. The half-life of zonisamide is decreased to 27 hours by phenytoin, to 38 hours by phenobarbital and carbamazepine, and to 46 hours by valproate. Plasma protein binding of phenytoin and carbamazepine was not affected by zonisamide administration (see PRECAUTIONS, Drug Interactions subsection).



Interactions of Zonisamide with Other Carbonic Anhydrase Inhibitors:


Concomitant use of zonisamide, a carbonic anhydrase inhibitor, with any other carbonic anhydrase inhibitor (e.g., topiramate, acetazolamide or dichlorphenamide), may increase the severity of metabolic acidosis and may also increase the risk of kidney stone formation. Therefore, if zonisamide is given concomitantly with another carbonic anyhydrase inhibitor, the patient should be monitored for the appearance or worsening of metabolic acidosis (see PRECAUTIONS, Drug Interactions subsection).



Clinical Studies:


The effectiveness of zonisamide as adjunctive therapy (added to other antiepilepsy drugs) has been established in three multicenter, placebo-controlled, double blind, 3-month clinical trials (two domestic, one European) in 499 patients with refractory partial onset seizures with or without secondary generalization. Each patient had a history of at least four partial onset seizures per month in spite of receiving one or two antiepilepsy drugs at therapeutic concentrations. The 499 patients (209 women, 290 men) ranged in age from 13–68 years with a mean age of about 35 years. In the two US studies, over 80% of patients were Caucasian; 100% of patients in the European study were Caucasian.


Zonisamide or placebo was added to the existing therapy. The primary measure of effectiveness was median percent reduction from baseline in partial seizure frequency. The secondary measure was proportion of patients achieving a 50% or greater seizure reduction from baseline (responders). The results described below are for all partial seizures in the intent-to-treat populations.


In the first study (n = 203), all patients had a 1-month baseline observation period, then received placebo or zonisamide in one of two dose escalation regimens; either 1) 100 mg/day for five weeks, 200 mg/day for one week, 300 mg/day for one week, and then 400 mg/day for five weeks; or 2) 100 mg/day for one week, followed by 200 mg/day for five weeks, then 300 mg/day for one week, then 400 mg/day for five weeks. This design allowed a 100 mg vs. placebo comparison over weeks 1–5, and a 200 mg vs. placebo comparison over weeks 2–6; the primary comparison was 400 mg (both escalation groups combined) vs. placebo over weeks 8–12. The total daily dose was given as twice a day dosing. Statistically significant treatment differences favoring zonisamide were seen for doses of 100, 200, and 400 mg/day.


In the second (n = 152) and third (n = 138) studies, patients had a 2–3 month baseline, then were randomly assigned to placebo or zonisamide for three months. Zonisamide was introduced by administering 100 mg/day for the first week, 200 mg/day the second week, then 400 mg/day for two weeks, after which the dose (zonisamide or placebo) could be adjusted as necessary to a maximum dose of 20 mg/kg/day or a maximum plasma level of 40 mcg/mL. In the second study, the total daily dose was given as twice a day dosing; in the third study, it was given as a single daily dose. The average final maintenance doses received in the studies were 530 and 430 mg/day in the second and third studies, respectively. Both studies demonstrated statistically significant differences favoring zonisamide for doses of 400 to 600 mg/day, and there was no apparent difference between once daily and twice daily dosing (in different studies). Analysis of the data (first 4 weeks) during titration demonstrated statistically significant differences favoring zonisamide at doses between 100 and 400 mg/day. The primary comparison in both trials was for any dose over Weeks 5 – 12.





















































Table 1. Median % Reduction in All Partial Seizures and % Responders in Primary Efficacy Analyses: Intent-To-Treat Analysis

*

p < 0.05 compared to placebo

Study

Median % reduction in partial seizures


% Responders
ZonisamidePlaceboZonisamidePlacebo 
Study 1:n=98n=72n=98n=72
Weeks 8-12:40.5%*9%41.8%*22.2%
Study 2:n=69n=72n=69n=72
Weeks 5-12:29.6%*-3.2%29%15%
Study 3:n=67n=66n=67n=66
Weeks 5-12:27.2%*-1.1%28%*12%
























































Table 2. Median % Reduction in All Partial Seizures and % Responders for Dose Analyses in Study 1: Intent-To-Treat Analysis

*

p < 0.05 compared to placebo

Dose Group

Median % reduction in partial seizures


% Responders
ZonisamidePlaceboZonisamidePlacebo
100-400 mg/day:n=112n=83n=112n=83
Weeks 1-12:32.3%*5.6%32.1%*9.6%
100 mg/day:n=56n=80n=56n=80
Weeks 1-5:24.7%*8.3%25%*11.3%
200 mg/day:n=55n=82n=55n=82
Weeks 2-6:20.4%*4%25.5%*9.8%

Figure 1 presents the proportion of patients (X-axis) whose percentage reduction from baseline in the all partial seizure rate was at least as great as that indicated on the Y-axis in the second and third placebo-controlled trials. A positive value on the Y-axis indicates an improvement from baseline (i.e., a decrease in seizure rate), while a negative value indicates a worsening from baseline (i.e., an increase in seizure rate). Thus, in a display of this type, the curve for an effective treatment is shifted to the left of the curve for placebo. The proportion of patients achieving any particular level of reduction in seizure rate was consistently higher for the zonisamide groups compared to the placebo groups. For example, Figure 1 indicates that approximately 27% of patients treated with zonisamide experienced a 75% or greater reduction, compared to approximately 12% in the placebo groups.


Figure 1: Proportion of Patients Achieving Differing Levels of Seizure Reduction in Zonisamide and Placebo Groups in Studies 2 and 3



No differences in efficacy based on age, sex or race, as measured by a change in seizure frequency from baseline, were detected.



Indications and Usage for Zonisamide Capsules


Zonisamide Capsules USP are indicated as adjunctive therapy in the treatment of partial seizures in adults with epilepsy.



Contraindications


Zonisamide Capsules are contraindicated in patients who have demonstrated hypersensitivity to sulfonamides or zonisamide.



Warnings


Potentially Fatal Reactions to Sulfonamides: Fatalities have occurred, although rarely, as a result of severe reactions to sulfonamides (zonisamide is a sulfonamide) including Stevens-Johnson syndrome, toxic epidermal necrolysis, fulminant hepatic necrosis, agranulocytosis, aplastic anemia, and other blood dyscrasias. Such reactions may occur when a sulfonamide is readministered irrespective of the route of administration. If signs of hypersensitivity or other serious reactions occur, discontinue zonisamide immediately. Specific experience with sulfonamide-type adverse reaction to zonisamide is described below.


Serious Skin Reactions: Consideration should be given to discontinuing zonisamide in patients who develop an otherwise unexplained rash. If the drug is not discontinued, patients should be observed frequently. Seven deaths from severe rash [i.e. Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN)] were reported in the first 11 years of marketing in Japan. All of the patients were receiving other drugs in addition to zonisamide. In post-marketing experience from Japan, a total of 49 cases of SJS or TEN have been reported, a reporting rate of 46 per million patient-years of exposure. Although this rate is greater than background, it is probably an underestimate of the true incidence because of under-reporting. There were no confirmed cases of SJS or TEN in the US, European, or Japanese development programs.


In the US and European randomized controlled trials, 6 of 269 (2.2%) zonisamide patients discontinued treatment because of rash compared to none on placebo. Across all trials during the US and European development, rash that led to discontinuation of zonisamide was reported in 1.4% of patients (12 events per 1000 patient-years of exposure). During Japanese development, serious rash or rash that led to study drug discontinuation was reported in 2% of patients (27.8 events per 1000 patient years). Rash usually occurred early in treatment, with 85% reported within 16 weeks in the US and European studies and 90% reported within two weeks in the Japanese studies. There was no apparent relationship of dose to the occurrence of rash.



Serious Hematologic Events:


Two confirmed cases of aplastic anemia and one confirmed case of agranulocytosis were reported in the first 11 years of marketing in Japan, rates greater than generally accepted background rates. There were no cases of aplastic anemia and two confirmed cases of agranulocytosis in the US, European, or Japanese development programs. There is inadequate information to assess the relationship, if any, between dose and duration of treatment and these events.



Oligohidrosis and Hyperthermia in Pediatric Patients:


Oligohidrosis, sometimes resulting in heat stroke and hospitalization, is seen in association with zonisamide in pediatric patients.


During the pre-approval development program in Japan, one case of oligohidrosis was reported in 403 pediatric patients, an incidence of 1 case per 285 patient-years of exposure. While there were no cases reported in the US or European development programs, fewer than 100 pediatric patients participated in these trials.


In the first 11 years of marketing in Japan, 38 cases were reported, an estimated reporting rate of about 1 case per 10,000 patient-years of exposure. In the first year of marketing in the US, 2 cases were reported, an estimated reporting rate of about 12 cases per 10,000 patient-years of exposure. These rates are underestimates of the true incidence because of under-reporting. There has also been one report of heat stroke in an 18-year-old patient in the US.


Decreased sweating and an elevation in body temperature above normal characterized these cases. Many cases were reported after exposure to elevated environmental temperatures. Heat stroke, requiring hospitalization, was diagnosed in some cases. There have been no reported deaths.


Pediatric patients appear to be at an increased risk for zonisamide-associated oligohidrosis and hyperthermia. Patients, especially pediatric patients, treated with zonisamide should be monitored closely for evidence of decreased sweating and increased body temperature, especially in warm or hot weather. Caution should be used when zonisamide is prescribed with other drugs that predispose patients to heat-related disorders; these drugs include, but are not limited to, carbonic anhydrase inhibitors and drugs with anticholinergic activity.


The practitioner should be aware that the safety and effectiveness of zonisamide in pediatric patients have not been established, and that zonisamide is not approved for use in pediatric patients.



Suicidal Behavior and Ideation


Antiepileptic drugs (AEDs), including zonisamide, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.


Pooled analyses of 199 placebo-controlled, clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI: 1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.


The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.


The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analyzed.


Table 3 shows absolute and relative risk by indication for all evaluated AEDs.





























Table 3: Risk by indication for antiepileptic drugs in the pooled analysis
IndicationPlacebo Patients with Events per 1000 PatientsDrug Patients with Events per 1000 PatientsRelative Risk: Incidence of Events in Drug Patients/Incidence in Placebo PatientsRisk Difference: Additional Drug Patients with Events per 1000 Patients
Epilepsy13.43.52.4
Psychiatric5.78.51.52.9
Other11.81.90.9
Total2.44.31.81.9

The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.


Anyone considering prescribing zonisamide or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.


Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thought, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers (see WARNINGS, Cognitive/ Neuropsychiatric Adverse Events subsection below).



Metabolic Acidosis:


Zonisamide causes hyperchloremic, non-anion gap, metabolic acidosis (i.e., decreased serum bicarbonate below the normal reference range in the absence of chronic respiratory alkalosis) (see PRECAUTIONS, Laboratory tests subsection). This metabolic acidosis is caused by renal bicarbonate loss due to the inhibitory effect of zonisamide on carbonic anhydrase.


Generally, zonisamide-induced metabolic acidosis occurs early in treatment, but it can develop at any time during treatment. Metabolic acidosis generally appears to be dose-dependent and can occur at doses as low as 25 mg daily.


Conditions or therapies that predispose to acidosis (such as renal disease, severe respiratory disorders, status epilepticus, diarrhea, ketogenic diet, or specific drugs) may be additive to the bicarbonate lowering effects of zonisamide.


Some manifestations of acute or chronic metabolic acidosis include hyperventilation, nonspecific symptoms such as fatigue and anorexia, or more severe sequelae including cardiac arrhythmias or stupor. Chronic, untreated, metabolic acidosis may increase the risk for nephrolithiasis or nephrocalcinosis. Nephrolithiasis has been observed in the clinical development program in 4% of adults treated with zonisamide, has also been detected by renal ultrasound in 8% of pediatric treated patients who had at least one ultrasound prospectively collected, and was reported as an adverse event in 3% (4/133) of pediatric patients (see PRECAUTIONS, Kidney Stones subsection).


Chronic, untreated metabolic acidosis may result in osteomalacia (referred to as rickets in pediatric patients) and/or osteoporosis with an increased risk for fracture. Of potential relevance, zonisamide treatment was associated with reductions in serum phosphorus and increases in serum alkaline phosphatase, changes that may be related to metabolic acidosis and osteomalacia (see PRECAUTIONS, Laboratory Tests subsection).


Chronic, untreated metabolic acidosis in pediatric patients may reduce growth rates. A reduction in growth rate may eventually decrease the maximal height achieved. The effect of zonisamide on growth and bone-related sequelae has not been systematically investigated.


Measurement of baseline and periodic serum bicarbonate during treatment is recommended. If metabolic acidosis develops and persists, consideration should be given to reducing the dose or discontinuing zonisamide (using dose tapering). If the decision is made to continue patients on zonisamide in the face of persistent acidosis, alkali treatment should be considered.


Serum bicarbonate was not measured in the adjunctive controlled trials of adults with epilepsy. However, serum bicarbonate was studied in three clinical trials for indications which have not been approved: a placebo-controlled trial for migraine prophylaxis in adults, a controlled trial for monotherapy in epilepsy in adults, and an open label trial for adjunctive treatment of epilepsy in pediatric patients (3-16 years). In adults, mean serum bicarbonate reductions ranged from approximately 2 mEq/L at daily doses of 100 mg to nearly 4mEq at daily doses of 300 mg. In pediatric patients, mean serum bicarbonate reductions ranged from approximately 2 mEq/L at daily doses from above 100mg up to 300 mg, to nearly 4 mEq/L at daily doses from above 400 mg up to 600 mg.


In two controlled studies in adults, the incidence of a persistent treatment-emergent decrease in serum bicarbonate to less than 20 mEq/L (observed at 2 or more consecutive visits or the final visit) was dose-related at relatively low zonisamide doses. In the monotherapy trial of epilepsy, the incidence of a persistent treatment-emergent decrease in serum bicarbonate was 21% for daily zonisamide doses of 25 mg or 100 mg, and was 43% at a daily dose of 300 mg. In a placebo-controlled trial for prophylaxis of migraine, the incidence of a persistent treatment-emergent decrease in serum bicarbonate was 7% for placebo, 29% for 150mg daily, and 34% for 300mg daily. The incidence of persistent markedly abnormally low serum bicarbonate (decrease to less than 17 mEq/L and more than 5 mEq/L from a pretreatment value of at least 20 mEq/L in these controlled trials was 2% or less.


In the pediatric study, the incidence of persistent, treatment-emergent decreases in serum bicarbonate to levels less than 20 mEq/L was 52%at doses up to 100 mg daily, was 90% for a wide range of doses up to 600 mg daily, and generally appeared to increase with higher doses. The incidence of a persistent markedly abnormally low serum bicarbonate value was 4% at doses up to 100 mg daily, was 18% for a wide range of doses up to 600 mg daily, and generally appeared to increase with higher doses. Some patients experienced moderately severe serum bicarbonate decrements down to a level as low as 10 mEq/L.


The relatively high frequencies of varying severities of metabolic acidosis observed in this study of pediatric patients (compared to the frequency and severity observed in various clinical trial development programs in adults) suggest that pediatric patients may be more likely to develop metabolic acidosis than adults.



Seizures on Withdrawal:


As with other AEDs, abrupt withdrawal of zonisamide in patients with epilepsy may precipitate increased seizure frequency or status epilepticus. Dose reduction or discontinuation of zonisamide should be done gradually.



Teratogenicity:


Women of child bearing potential who are given zonisamide should be advised to use effective contraception. Zonisamide was teratogenic in mice, rats, and dogs and embryolethal in monkeys when administered during the period of organogenesis. A variety of fetal abnormalities, including cardiovascular defects, and embryo-fetal deaths occurred at maternal plasma levels similar to or lower than therapeutic levels in humans. These findings suggest that the use of zonisamide during pregnancy in humans may present a significant risk to the fetus (see PRECAUTIONS, Pregnancy subsection).


Zonisamide should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.



Cognitive/ Neuropsychiatric Adverse Events:


Use of zonisamide was frequently associated with central nervous system-related adverse events. The most significant of these can be classified into three general categories: 1) psychiatric symptoms, including depression and psychosis, 2) psychomotor slowing, difficulty with concentration, and speech or language problems, in particular, word-finding difficulties, and 3) somnolence or fatigue.


In placebo-controlled trials, 2.2% of patients discontinued zonisamide or were hospitalized for depression compared to 0.4% of placebo patients. Among all epilepsy patients treated with zonisamide, 1.4% were discontinued and 1% were hospitalized because of reported depression or suicide attempts. In placebo-controlled trials, 2.2% of patients discontinued zonisamide or were hospitalized due to psychosis or psychosis-related symptoms compared to none of the placebo patients. Among all epilepsy patients treated with zonisamide, 0.9% were discontinued and 1.4% were hospitalized because of reported psychosis or related symptoms.


Psychomotor slowing and difficulty with concentration occurred in the first month of treatment and were associated with doses above 300 mg/day. Speech and language problems tended to occur after 6–10 weeks of treatment and at doses above 300 mg/day. Although in most cases these events were of mild to moderate severity, they at times led to withdrawal from treatment.


Somnolence and fatigue were frequently reported CNS adverse events during clinical trials with zonisamide. Although in most cases these events were of mild to moderate severity, they led to withdrawal from treatment in 0.2% of the patients enrolled in controlled trials. Somnolence and fatigue tended to occur within the first month of treatment. Somnolence and fatigue occurred most frequently at doses of 300–500 mg/day. Patients should be cautioned about this possibility and special care should be taken by patients if they drive, operate machinery, or perform any hazardous task.



Precautions



General


Somnolence is commonly reported, especially at higher doses of zonisamide (see WARNINGS: Cognitive/ Neuropsychiatric Adverse Eventssubsection). Zonisamide is metabolized by the liver and eliminated by the kidneys; caution should therefore be exercised when administering zonisamide to patients with hepatic and renal dysfunction (see CLINICAL PHARMACOLOGY, Special Populations subsection).


Kidney Stones:

Among 991 patients treated during the development of zonisamide, 40 patients (4%) with epilepsy receiving zonisamide developed clinically possible or confirmed kidney stones (e.g. clinical symptomatology, sonography, etc.), a rate of 34 per 1000 patient-years of exposure (40 patients with 1168 years of exposure). Of these, 12 were symptomatic, and 28 were described as possible kidney stones based on sonographic detection. In nine patients, the diagnosis was confirmed by a passage of a stone or by a definitive sonographic finding. The rate of occurrence of kidney stones was 28.7 per 1000 patient-years of exposure in the first six months, 62.6 per 1000 patient-years of exposure between 6 and 12 months, and 24.3 per 1000 patient-years of exposure after 12 months of use. There are no normative sonographic data available for either the general population or patients with epilepsy.


Although the clinical significance of the sonographic findings may not be certain, the development of nephrolithiasis may be related to metabolic acidosis (see WARNINGS, Metabolic Acidosis subsection). The analyzed stones were composed of calcium or urate salts. In general, increasing fluid intake and urine output can help reduce the risk of stone formation, particularly in those with predisposing risk factors. It is unknown, however, whether these measures will reduce the risk of stone formation in patients treated with zonisamide.


Although not approved in pediatric patients, sonographic findings consistent with nephrolithiasis were also detected in 8% of a subset of zonisamide treated pediatric patients who had at least one renal ultrasound prospectively performed in a clinical development development program investigating open-label treatment. The incidence of kidney stone as an adverse event was 3% (see WARNINGS, Metabolic Acidosis subsection).


Effect on Renal Function:

In several clinical studies, zonisamide was associated with a statistically significant 8% mean increase from baseline of serum creatinine and blood urea nitrogen (BUN) compared to essentially no change in the placebo patients. The increase appeared to persist over time but was not progressive; this has been interpreted as an effect on glomerular filtration rate (GFR). There were no episodes of unexplained acute renal failure in clinical development in the US, Europe, or Japan. The decrease in GFR appeared within the first 4 weeks of treatment. In a 30-day study, the GFR returned to baseline within 2–3 weeks of drug discontinuation. There is no information about reversibility, after drug discontinuation, of the effects on GFR after long-term use. Zonisamide should be discontinued in patients who develop acute renal failure or a clinically significant sustained increase in the creatinine/BUN concentration. Zonisamide should not be used in patients with renal failure (estimated GFR < 50 mL/min) as there has been insufficient experience concerning drug dosing and toxicity.


Sudden Unexplained Death in Epilepsy:

During the development of zonisamide, nine sudden unexplained deaths occurred among 991 patients with epilepsy receiving zonisamide for whom accurate exposure data are available. This represents an incidence of 7.7 deaths per 1000 patient years. Although this rate exceeds that expected in a healthy population, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with refractory epilepsy not receiving zonisamide (ranging from 0.5 per 1000 patient-years for the general population of patients with epilepsy, to 2–5 per 1000 patient-years for patients with refractory epilepsy; higher incidences range from 9–15 per 1000 patient-years among surgical candidates and surgical failures). Some of the deaths could represent seizure-related deaths in which the seizure was not observed.


Status Epilepticus:

Estimates of the incidence of treatment emergent status epilepticus in zonisamide-treated patients are difficult because a standard definition was not employed. Nonetheless, in controlled trials, 1.1% of patients treated with zonisamide had an event labeled as status epilepticus compared to none of the patients treated with placebo. Among patients treated with zonisamide across all epilepsy studies (controlled and uncontrolled), 1% of patients had an event reported as status epilepticus.



Information for Patients


Patients should be informed of the availability of a Medication Guide, and they should be instructed to read the Medication Guide prior to taking zonisamide. Patients should be instructed to take zonisamide only as prescribed.


Patients should be advised as follows: (See Medication Guide)


  1. Zonisamide may produce drowsiness, especially at higher doses. Patients should be advised not to drive a car or operate other complex machinery until they have gained experience on zonisamide sufficient to determine whether it affects their performance. Because of the potential of zonisamide to cause CNS depression, as well as other cognitive and/or neuropsychiatric adverse events, zonisamide should be used with caution if used in combination with alcohol or other CNS depressants.

  2. Patients should contact their physician immediately if a skin rash develops or seizures worsen.

  3. Patients should contact their physician immediately if they develop signs or symptoms, such as sudden back pain, abdominal pain, and/or blood in the urine, that could indicate a kidney stone. Increasing fluid intake and urine output may reduce the risk of stone formation, particularly in those with predisposing risk factors for stones.

  4. Patients should contact their physician immediately if a child has been taking zonisamide and is not sweating as usual with or without a fever.

  5. Because zonisamide can cause hematological complications, patients should contact their physician immediately if they develop a fever, sore throat, oral ulcers, or easy bruising.

  6. Suicidal Thinking and Behavior – Patients, their caregivers, and families should be counseled that AEDs, including zonisamide, may increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediat